Ex(n;8)
From Combinatorics Wiki
[math]n[/math] | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9 |
10 | 10 | 11 | 12 | 14 | 15 | 16 | 18 | 19 | 21 | 22 |
20 | 23 | 25 | 27 | 28 | 29 | 31 | 33 | 34 | 35 | 37 |
30 | 39 | 40 | 42 | 43 | 45 | 47 | 48 | 50 | 52 | 54 |
40 | 55 | 57 | 58 | 60 | 62 | 64 | 65 | 67 | 69 | 71 |
50 | 73 | 75 | 77 | 78 | 80 | 81 | 83 | 85 | 87 | 88 |
60 | 90 | 91 | 93 | 95 | 97 | 99 | 100 | 102 | 103 | 105 |
The following table is the key to the colors in the table presented above:
Color | References |
* | Folklore. |
* | Biggs and Hoare <ref>N. L. Biggs, M. J. Hoare, A trivalent graph with 58 vertices and girth 9, Discrete Mathematics 30 Issue 3 (1980) 299-301</ref> |
* | Frucht <ref>R. Frucht, Remarks on finite groups defined by generating relations, Canadian Journal Mathematics 7 (1955) 8-17</ref> |
* | Abajo and Diánez <ref>E. Abajo, A. Diánez, Size of Graphs with High Girth, Electronic Notes in Discrete Mathematics 29 (2007) 179--183</ref> |
* | Marshall et al. <ref>K. Marshall, M. Miller and J. Ryan, Extremal Graphs without Cycles of length 8 or less, preprint</ref> |
References
<references />